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Direct Simulation of Acoustic Scattering by Two- and
Three-Dimensional Bodies
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A method is presented for the determination of acoustic scattering from two- and three-dimensional bodies with
arbitrary geometries and in the presence of a nonuniform � ow. The technique is an extension of the impedance
mismatch method, in which the scattering body is replaced with a region of different acoustic impedance. To
minimize the oscillationsat the bodysurface, an auxiliaryproblem,related to the conservative form of the linearized
Euler equations, is posed and solved numerically. Example problems are solved for a cylinder, a Rankine oval,
and a sphere in a � uid at rest and in the presence of a nonuniform mean � ow. Comparisons are made with exact
solutions, if they are available, and the agreement between the numerical and the analytical solutions is very good.

Nomenclature
a = speed of sound
b = radius of sphere
D = length of Rankine oval
d = width of Rankine oval
E, F = x , y components of � ux
H (2)

0 = zeroth-orderHankel function of second kind
k = wavenumber
L = smoothing parameter
Mx , My = x , y components of Mach number
n = distance normal to body surface
p = pressure
Q = source/sink strength
R = re� ection coef� cient
R q ,n = residual
r = radial distance in cylindrical polar coordinates
r0 = radial distance in spherical polar coordinates
t = time
U = vector of unknown primitive variables
U, V , W = x , y, z components of mean velocity
u, v = x , y components of particle velocity
q = density
x = frequency

Subscripts

i = incident
n = nonuniform mean � ow in residual
o = ambient properties
r = re� ected
s = scattered
t = transmitted
u = uniform mean � ow in residual
q = value of mean density in residual
1, 2 = ambient properties of media 1, 2

Superscript

ˆ = auxiliary variable
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Introduction

R ESEARCH on rotorcraft has generally been focused on in-
creasingtheir speedandperformance.This hasdrawn attention

to the need to understand and control the noise that they generate.
Variousmethodsare availableto predict the near and the far acoustic
� elds of rotorcraft. Ffowcs Williams and Hawkings1 (FW-H) gen-
eralized Lighthill’s acoustic analogy approach2 including the effect
of very general types of surfaces and surface motions. The FW-H
equation is a rearrangement of the Navier–Stokes equation into an
inhomogeneous wave equation with a quadrupole source distribu-
tion in the volume exterior to any surfaces and monopole and dipole
sources on the surfaces.

The acoustic analogy has been used by Brentner3 to develop the
WOPWOP computer code that solves the FW-H equation for both
near- and far-� eld noise. Recently Brentner4 developed an ef� cient
and robust method to predict high-speedimpulsivenoise by using a
far-� eld approximation for the quadrupole source term. He imple-
mented this technique in the WOPWOP+ code.

An alternativeto the acoustic analogyapproach is the direct com-
putationof the � ow and acoustic � elds surroundingthe rotor blades.
This is simply the application of computational � uid dynamics
(CFD) methodology to the calculation of the acoustic � eld directly
as part of the unsteady � uid dynamic problem. Potential, Euler, or
Navier–Stokes solvers have been used. The main drawback is that
this numerical approach is very computationally time intensive. A
large number of mesh points are required, and calculationsquickly
become too large, even for today’s fastest computers.However, this
direct method is potentially capable of providing the solution to the
most complicated acoustic problems.

Nevertheless, calculations over limited regions can be extended
to the far � eld by making use of Kirchhoff methods. The Kirchhoff
formulation is based on an integration over a surface surrounding
the rotor and allows both rotation and translation of this surface.
Strawn et al.5 compared the performance of rotating and nonrotat-
ing surfaces for Kirchhoff methods with experimental results and
they showed good agreement. However, the inclusion of blade–

vortex interaction noise prediction is not an easy task because the
Kirchhoff surface is assumed to move through an environment at
rest. Brentner and Farassat6 have shown how the use of the FW-H
equation can overcome many of the limitations associated with the
linear Kirchhoff method. The major advantage of Kirchhoff and
related methods over direct computations occurs in the far-� eld
calculations. CFD solvers are generally applied to a limited do-
main, whereas the combined CFD/Kirchhoff method can compute
the acoustic pressure at any location with reduced computational
time requirements.

All these methods have advantages and some de� ciencies, but
usually they do not take into account the aircraft fuselageand wings
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and the � ow around the aircraft in their predictions. An obstacle in
the path of a sound wave causes scattering and may be perceived
as a secondary source of sound. These scattering effects cannot be
ignored for sources near a scatteringbody, as is always the case for
any powered aircraft.

Several methods have been developed to solve scattering prob-
lems from complex geometry bodies. These include the bound-
ary and the � nite element methods as well as � nite difference ap-
proaches.Generally, these types of formulationcannot handle cases
in which the acoustic source has a broad spectrum or in the pres-
ence of a nonuniform� ow. Also, few studies have attempted a time-
domain formulation of this phenomenon.

Hanson and Magliozzi7 have developed a three-dimensional
method in which the � ow� eld is made up of a boundary-layerregion
and an outer region free of shear. They consider the scattering of
propeller noise by a fuselage modeled as an in� nite cylinder. The
acoustic waves are solved separately in each domain, and a match-
ing condition is applied at the outer limit of the boundary layer.
Previously, Hanson8 had developed a helicoidal surface theory that
gives the harmonicnoiseof propellersin the far � eld. Becauseof the
presence of the fuselage, the free � eld predictions need to be cor-
rected by factors varying from ¡ 20 to 4 dB in the � ight direction.
Also, a shadow zone occurs around the fuselage.

Another approach to scattering problems is the geometric acous-
tics (GA) method. Atalla and Glegg9 have used a combination of
geometric acoustics and the paraxial ray approximation(PRA). Re-
sults for the scattering of sound from a point source by a cylinder
and by a Rankine oval show good qualitative agreement with the
results of Hanson and Magliozzi. Atalla and Glegg10 also applied
the PRA to the problem of fuselage scattering of rotor noise. This
GA method fails in the shadow zone where diffraction effects are
important. Also, the speci� cation of a more complicated scattering
body shape than the ellipsoids and the rectangular boxes used in
their model problems would be complicated.

The present study uses a new technique for the solution of time-
dependent acoustic-scattering problems: the impedance mismatch
method (IMM). This technique, developed by Chung,11 simpli� es
the implementationof a solidwall boundaryconditionby setting the
acoustic impedance of each medium encountered by the wave to a
different value. This impedance difference results in re� ected and
transmittedwaves with appropriateamplitudes.The primary bene� t
of this method is that no modi� cations to a simple Cartesian grid
need to be made for complicatedbody geometries. Thus high-order
� nite difference schemes, suitable for computational aeroacoustics
(CAA) simulations,may be appliedwithoutmodi� cation in all parts
of the domain. Further details of the original implementation are
given by Chung11 and Chung and Morris.12

This paper introduces some major modi� cations to the IMM.
First, it allows for the separate calculation of the incident � eld.
This can be obtained from an analytical solution in the case of
model problems or from a numerical prediction scheme such as
WOPWOP+ . Also, the method has been extended to include the
effects of a nonuniform � ow about the scattering body. This paper
provides a validation of the method through the use of two- and
three-dimensionalmodel problems for which exact solutions exist,
although this is not the case when nonuniform � ow is included. A
parallel program, written in Fortran 90, is used for the simulations.
The ultimate goal of this work is to couple a rotorcraft noise pre-
diction code, such as WOPWOP,3 to this parallel scattering code to
predict the noise scattered by the fuselage of a rotorcraft.

In the next section descriptions of the IMM, the governing equa-
tions, and the numerical implementation are given. Then several
numerical simulations for acoustic scattering by two- and three-
dimensional bodies are described. These include the scattering of
sound from a line source by a cylinder and by a Rankine oval in a
� uid at rest and in a nonuniformmean � ow. Also consideredare the
scatteringof waves from a point source by a sphere in a � uid at rest
and in a nonuniform mean � ow.

The examples presented here represent relatively low-frequency
problems. The application of the present method to a typical rotor-
craft applicationis given in the Discussionand Conclusionssection.

Also discussed is the applicationof the presentmethod to scattering
from bodies with sharp edges.

Impedance Mismatch Method
Basic Principle

The IMM is based on the propagation of acoustic waves in inho-
mogeneous media. Consider a plane interface between two media.
The unperturbed properties of the media and the � uctuations in the
two media are denoted by subscripts 1 and 2. Thus q 1 and q 2 are
the mean densities and a1 and a2 are the speeds of sound in the two
media, respectively. The incident wave impinges on the boundary
between the two media, and this results in transmitted and re� ected
waves. In termsof thecharacteristicimpedancesof eachmedium q a,
the transmission and the re� ection coef� cients can be shown to be
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where pi , pt , and pr are the incident, transmitted, and re� ected
pressures, respectively.

Now consider the form of the linearizedEuler equations for one-
dimensional � ow:
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where q o and ao are the densities and the speeds of sound in either
medium. It should be noted that the discontinuitiesin the properties
of the two media at the interface are matched by discontinuities in
the spatial derivatives of the acoustic � uctuations. In this way the
time derivatives are continuous. However, high-order spatial � nite
difference schemes have dif� culty in the accurate approximation
of such discontinuities. In fact, Chung11 found that the numerical
solutions to a naive application of the impedance mismatch con-
cept exhibited instabilities.To overcome this problem, an auxiliary
problem is solved. The one-dimensionalauxiliary problem with no
mean � ow is described by the following set of equations, where
ˆq = q / q 0 , û = uq 0 , and p̂ = p / q 0:
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where the new dependent variables are required to be continuousat
the interface. These new variables implicitly include the matching
of discontinuities present in the physical problem. In the present
analysis it is assumed that the speeds of sound are the same in the
two media. This means that, in multidimensionalproblems, oblique
waves are not distorted and the impedances of the two media are
determined by their density. The transmission and the re� ection
coef� cients then become

T̂ = j p̂t / p̂i j = 2 q 2 / ( q 1 + q 2) (9)

R̂ = j p̂r / p̂i j = ( q 1 ¡ q 2) / ( q 1 + q 2) (10)
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Consequently, to represent the presence of a re� ecting body a
lower relative density, q 2 ¿ q 1 is required. q 2 / q 1 =1/30 has been
found to be an appropriate value to represent the density of the
scattering body.11 Now the solution in the � rst medium, outside
the scatteringbody, is identical to the physical solution,whereas the
solution inside the body is � cticious.

Thus, in the IMM, the presence of a body is represented by a
lower mean density in governing equations. A body-� tted grid is
not required and the same Cartesian grid may be used to represent
any body geometry. The governing equations are described next.

Governing Equations

In the two-dimensional case, the total � uctuations satify the lin-
earized Euler equations in nondimensional form:
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and Mx and My are the nondimensionalmean � ow velocities in the
x and the y directions,respectively.The velocityscale is the uniform
speed of sound, the density scale is the density in the � uid medium
q 1, and the length scale is based on a dimension of the scattering
body as de� ned below. R q o ,n (U, t ) denotes the residual. The � rst
subscript indicates the value of the mean density and the second
denotes whether the mean � ow is uniform u or nonuniform n. The
arguments of the residual are the vector of unknowns and note that
the residual is time dependent.

The original IMM11 solved for the total � eld. This would mean
that an externally determined incident � eld would have to be im-
posedat one boundaryof the computationaldomain. In addition,the
same boundarywouldhave to permit the radiationof scatteredwaves
without re� ection. The present implementation separates the inci-
dent and the scattered� elds. In all thecases to be solved,the incident
pressure is assumed to be known. This is either from an analytical
solution or from a separate noise prediction code. All variables are
split in three parts: a known unperturbed � ow condition, denoted
by the subscript o, a known incident perturbation, denoted by the
subscript i , and an undeterminedscatteredperturbation,denotedby
the subscript s. Thus,

q = q o + q i + q s , u = Uo + ui + us

v = Vo + vi + vs , p = Po + pi + ps (13)

Because many rotorcraft noise prediction codes predict only the
acousticpressure,only the incidentpressureis assumedto beknown.
The particle velocities of the incident � eld are calculated.

The incident � eld is assumed to propagate in a uniform mean
� ow with components Mxo and Myo in the x and the y directions,
respectively. So it satis� es the equation
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where, as the notation for the residual implies, Ei and Fi are given
by Eqs. (12) with q o = 1, Mx = Mxo , My = Myo , and U =Ui .

If the equation for the incident � eld is subtracted from the total
� eld equationand the � uctuationsare split into incidentandscattered
components, the equation for the scattered � eld may be written as
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or

@Us

@t
= R q o ,n (Us , t ) + R q o ,n (Ui , t ) ¡ R1,u (Ui , t ) (16)

The � rst residual on the right-hand side of Eq. (16) represents the
propagation of the scattered � eld in a nonuniform � ow. The � nal
two residuals represent the difference between the incident � eld in
a uniform � ow in the absence of the body and corrections for the
nonuniform � ow and the presence of the scattering body. These
terms act as sources that drive the scattered � eld.

In the uniform medium, far from the body,

@Us

@t
= R1,u (Us , t ) (17)

That is, the right-hand side of Eq. (15) is equal to zero everywhere
where the � ow is undisturbed.This propertyof the governingequa-
tion is used to optimize the implementation. The incident � eld is
calculated on only a smaller grid, a subset of the computational
domain used for the scattered � eld.

Numerical Implementation

CAA requires a high accuracy in the numerical schemes used
to obtain accurate numerical solutions with a minimum of disper-
sion and dissipation.Thus, the dispersion-relation-preserving � nite
difference scheme13 has been used for the spatial discretization of
these equations. The scheme uses a 7-point stencil and is formally
fourth-order accurate: However, its dispersion characteristics are
better than a sixth-order accurate, Taylor series-based scheme. The
algorithmmarches in time, and a time step consistsof three calls to a
fourth-order Runge–Kutta time-integration method for both � elds.
A new incident � eld is required at only the second and the fourth
stagesof the fourth-orderRunge–Kutta time integrationfor the scat-
tered � eld, as the source terms in the residualdo not changebetween
the second and the third stages. Therefore integrationof the incident
� eld is performed after the � rst and the third stages of the scattered-
� eld integration. Nonre� ecting boundary conditions13 are applied
at the boundaryof both the incidentand the scatteredcomputational
domains. In fact, because the incident pressure is already known,
no particular boundary condition is required for letting the incident
wave propagate out of the domain. Therefore the particle velocities
at theouterpointscan simplybe calculatedfrom theEuler equations.
Calculations with both the Euler equations and the nonre� ecting
boundary conditions have been performed and give similar results.
However, the computational time is much lower when a radiation
boundary condition is used.

The parallel programs are written in Fortran 90 and use the
Message Passing Interface library for parallel communication.
The computationaldomain consists of two grids: a large grid where
the scattered � eld is calculatedand a smaller grid where the particle
velocities of the incident � eld are calculated. Both grids are Carte-
sian and are split evenly among the processors so that the workload
of each processor is identical. Further details are given by Laik.14

The simulations have been performed on a Silicon Graphics
Power Challengewith six processors for the two-dimensionalcases
and eight processors for the three-dimensional cases. The compu-
tational time depends on the size of both grids. For the case of
scattering of a point source by a sphere at rest, 64.5 s per time step
or 0.487 ms per time step per grid point is required. In the pres-
ence of the nonuniform mean � ow the incident grid is larger and
the computational time is higher: 82 s per time step or 0.625 ms
per time step per grid point. Also, the two-dimensional simulations
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show that the computational time scales linearly with the number
of processors.

Two-Dimensional Simulations
This sectionpresentsa numberof numericalexamplesof acoustic

scattering by two-dimensional bodies. The results are compared
with analytical solutions when they are available.

Plane Wave Impinging on a Cylinder

A plane wave propagates in the negative y direction and im-
pinges on a cylinder of unit nondimensional radius with its axis
perpendicular to the (x , y) plane located at the origin of the do-
main. The domains for the incident and the scattered � elds are from
(x , y) = ( ¡ 1.5, ¡ 1.5) to (1.5, 1.5) and from (x , y) = ( ¡ 5, ¡ 5) to
(5, 5), respectively.A uniform Cartesian grid of 201 £ 201 is used
for the scattered � eld, with the cylinder diameter equal to 40 grid
points. The domain is sketched in the Fig. 1. The effect of the body
densities is perceived only in the vicinity of the cylinder. Therefore
the incident particle velocities are calculated on only the smaller
grid de� ned above.

The incident pressure is initialized with the following de� nition
of a plane wave with a smoothed leading edge:

pi (x , y, t ) =

ìïï
í
ïïî

0.01 cos [k(y ¡ ysource) + x t]
for y ¸ ysource ¡ t

0.01exp{ ¡ 8 [(y ¡ ysource + t )2]}
otherwise

(18)

with

k = x = p , q i (x, y, t) = pi (x , y, t )

ui (x , y, 0) = vi (x , y, 0) = 0 (19)

ysource is chosen so that there are no incident pressure disturbances
inside the cylinder at the beginningof the simulation.Otherwise the
time history is dominated by a transient disturbance. This transient
is causedby the presenceof an incidentwave in the solidwithoutany
cancellationby the scattered� eld at the beginningof the calculation.
It dominates the total pressure history and contaminates the results.

In this case, the use of a plane wave provides an easy way to
evaluate the accuracyof the incident-waveparticle velocity calcula-
tions. A comparison shows a good agreement everywhere except in
a region near the computationalboundaries,5–6 points wide, where
the relative error is greater than 10 ¡ 6 and can reach 10%. This may
be due to the incompatabilityof the asymptoticboundaryconditions
and a plane-wave solution. In any event, these boundary values are
removed in the calculation of the scattered � eld in Eq. (16).

In the immediate vicinity of the body, high wave-number dis-
turbances are noticeable and arise from the discontinuity of body
densities at the interface. It should be noted that, although the new
dependentvariablesin the auxiliaryproblem, ˆq , û, v̂ , and p̂, are con-
tinuousat the interface,their derivativesare not. To reduce the effect
of this discontinuity, a model of the interface, which is commonly

Fig. 1 Schematic of the com-
putational domain for the scat-
tering of a plane wave by a
cylinder.

Fig. 2 Rms pressure for
the scattering of a plane
wave by a cylinder.

Fig. 3 Instantaneous pres-
sure along the x axis at t = 20
for the scattering of a plane
wave by a cylinder: ——, an-
alytical solution; and – – –,
numerical solution.

Fig. 4 Instantaneous pres-
sure along the y axis at t = 20
for the scattering of a plane
waveby a cylinder:——, an-
alytical solution; and – – –,
numerical solution.

used in oceanography for the propagation of waves in layered me-
dia, is applied in this study. The jump in body densities is replaced
with a smoothing function of the form

q 0 = 1
2 (1 + 1

30
) + 1

2 (1 ¡ 1
30

) tanh[(n ¡ 1) / L] (20)

where L is the distanceover which the density changes from 1
30 to 1

and n is the distance normal to the surface. A value of L of 0.05 has
been used in the present calculations.A detailed study of the effect
of this parameter has not been conducted,but smaller values would
increasethegenerationof highwave-numberdisturbancesand lower
values would extend the in� uence of the body unrealistically.With
the use of this smoothingof the surfacediscontinuity,the high wave-
number disturbances at the interface vanish.

Figure 2 presents the rms pressure contours. As expected, the
maximum re� ections are located above the cylinder whereas the
zone behind the body is shadowed. The IMM solution agrees very
well with the analytic solution.15 However, some differences are
perceivedin the regionclose to the cylinderbecausethe transmission
coef� cient has a nonzerovalue.Two sliceshave been extracted from
the two-dimensionalinstantaneousplots to comparetheanalyticand
the computational solutions. The pressure along the axes y =0 and
x = 0 are represented in Figs. 3 and 4, respectively. The errors are
not signi� cant and decrease with distance from the cylinder.

Line Source Scattering by a Rankine Oval

This section de� nes the Rankine oval geometry and the � ow
around the solid. Then the results of the simulationsare given. First,
the Rankine oval is placed in an environment at rest. Then these
results are compared with the case of the scattering of waves from
a line source by a Rankine oval in a � ow perturbed by the solid.
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Geometry and Flow

The � ow aroundthe Rankine oval is determinedby the superposi-
tion of a sourceand a sink of equal strengthin a uniform� ow� eld. In
the simulations, the nondimensional magnitude of the undisturbed
� ow is Mxo = 0.4. The strength of the source and the sink and the
distancebetween them are Q =0.3811065and 2d =1.4561566,re-
spectively.A Rankineovalof length D = 2 andwidthd = 1 is placed
at the origin of the domain and the interface is smoothed, as in the
cylinder case. Around the solid, the � ow velocities in the x and the
y directions may be written as

U (x , y) = Uo +
Q(x + d)

4p [(x + d)2 + y2]
3
2

¡
Q(x ¡ d)

4 p [(x ¡ d)2 + y2]
3
2

V (x , y) =
Qy

4p [(x + d)2 + y2]
3
2

¡
Qy

4 p [(x ¡ d)2 + y2]
3
2

(21)

Inside the body, the � ow velocity is set to zero.

No Mean Flow

A line source is placed at (x , y) = (0, 2) and the incident acoustic
waves impinge on the Rankine oval centeredat the origin.The com-
putational domains for the incident and the scattered � elds are from
(x , y) = ( ¡ 1.5, ¡ 1.5) to (1.5, 1.5) and from (x , y) = ( ¡ 9, ¡ 9) to
(9, 9), respectively.A uniform Cartesian grid of 361 £ 361 is used
for the scattered � eld. The domain is sketched in Fig. 5.

The incident pressure is initialized with the following de� nition
of a periodic wave from a line source:

pi = (0.01/4i ) exp(i x t ) H (2)
0 (kr ) (22)

where

k = x = p , q i (x, y, t) = pi (x , y, t )

ui (x , y, 0) = vi (x , y, 0) = 0 (23)

and r is the radial distance from the source.
Until a stationaryperiodic solution is achieved, the pressure pi is

multiplied by a smoothing function of the form

1
2 [1 ¡ tanh ( r ¡ X ¡ ct

0.05 ) ] (24)

X is chosen so that the incidentpressure is initiallynegligibleinside
the body.

Figure 6 shows the instantaneous pressure contours (the sum of
the incident and the scattered � elds) at time t =20. The white oval
shape represents the Rankine body. Also, a singularity exists at the
location of the source, and this zone is masked by a white disk.
The directivity pattern is symmetric about the y axis and consists
of � ve lobes. This is shown in Fig. 7. A shadow zone lies behind
the Rankine body, and behind the source the level of the sound is
attenuated.

Fig. 5 Schematic of the
computational domain for
the scattering of waves from
a line source by a Rankine
oval.

Fig. 6 Instantaneouspressure contour for the scattering of an acoustic
wave from a line source by a Rankine oval at t = 20, k = ¼, and Mx = 0.

Fig. 7 Sound directivity
for the scattering of an
acoustic wave from a line
source by a Rankine oval.
ys = 2, k = ¼: ——, Mx = 0;
and – – –, Mx = 0.4.

Nonuniform Mean Flow

In this simulation,the Rankineoval is embeddedin a � uid moving
in the positivex directionand perturbedby the presenceof the solid.
In this case the line source is located at (x , y) = (0, ys) = (0, 10).
This largervalue is chosen to ensure that the mean � ow is uniformin
the vicinity of the source. The pressure distribution for an acoustic
wave from a line source embedded in a � uid moving uniformlywith
a velocity Uo in the x direction may be written as

p(x, t) =
0.01

4i (1 ¡ M2
x )

1
2

exp{ i x

1 ¡ M2
x
[ t +

(x ¡ Uot )Uo

a2
o

]}
£ H (2)

0 { x

ao(1 ¡ M2
x )

[x2 + (1 ¡ M2
x )(y ¡ ys)

2]
1
2 } (25)

with

Mx = Uo /ao = 0.4, k = x = p , ys = 10

q i (x , y, t ) = pi (x , y, t ), ui (x , y, 0) = vi (x , y, 0) = 0
(26)

Also, the pressure is multiplied by the smoothing function given by
expression (24) until a periodic state is achieved.

The computational domains for the incident and the scattered
� eldsare from(x , y) = ( ¡ 6.5, ¡ 6.5) to (6.5, 6.5) and from(x, y) =
( ¡ 9, ¡ 9) to (9, 9), respectively. A uniform Cartesian grid of
381 £ 381 is used for the scattered � eld. The grid for the incident
� eld is much larger than that used in the precedingsection.Because
the mean � ow is perturbed around the body, the grid borders have
to be expanded so that the perturbationsof the mean � ow in both x
and y directions at the edge of the incident domain are negligible.

Figure 8 shows the instantaneous pressure contours at time
t = 31.6. The scattering pattern behind the Rankine body is seen
clearly. In the region between the source and the solid a standing
wave regime is established.The Doppler shift in wavelength is also
evident.

Two other simulations have been performed in this case to show
the effects of a mean � ow on the scattering pattern: scattering in
an environment at rest and in a uniform mean � ow unperturbed
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Fig. 8 Instantaneouspressure contour for the scattering of an acoustic
wave from a line source embedded in a nonuniform mean � ow by a
Rankine oval at t = 31.6, k = ¼, and Mx = 0.4.

Fig. 9 Comparisonof sound
directivity patterns for the
scattering of an acoustic wave
from a line source by a Rank-
ine oval. ys = 10, k = ¼: ——,
Mx = 0; – – –, Mx = 0.4, uni-
form � ow; and ¢ ¢ ¢ ¢ , Mx = 0.4,
nonuniform � ow.

by the scattering body. The source and the solid are kept at the
same locations.The directivitycurves in Fig. 9 show the differences
between these cases. The rms pressure is extracted on a circle of
radius 5 centered at the origin. Therefore the patterns shown for
sin h positive do not correspond to the far-� eld directivity because
of the presence of the source at (x , y) = (0, 10). The multiple lobes
are associated with the interference between the incident and the
scattered � elds, as shown in Fig. 8. In all cases, the shadow zone
remains almost identical. The mean � ow shrinks this zone and tilts
it backward slightly. The changes that are due to the nonuniformity
of the mean � ow do not appear to be important. This might not be
the case for shapes other than a Rankine oval in which the mean
� ow nonuniformity could be greater.

In view of these small differences, a case in which the � ow is
assumed to be uniform has been simulated with the source located
at (x , y) = (0, 2). The comparisonof far-� eld directivities,with and
without � ow, is shown in Fig. 7. There is a slight increase in the
radiation upstream, as would be expected. It should be noted that
the incident� eld has beenmodi� ed by the presenceof the mean � ow
so that the incident-pressurelevelson the surfaceof theRankineoval
are not the same in the two cases shown in Fig. 7. This explains the
reduction in the total � eld values in the presence of the mean � ow.

Three-Dimensional Simulations: Point Source
Scattering by a Sphere

This section presents two problems of acoustic scattering by
three-dimensionalbodies.First, results for the scatteringof acoustic
waves from a point source by a sphere are given and comparedwith
the analytic solution.16 Then the sphere is embedded in a nonuni-
form mean � ow. No analytic solutions are available for the latter
case.

No Mean Flow

A point source is placed at (x , y, z) = (0, 2.5, 0) and the in-
cident waves impinge on a sphere of radius b =0.5 centered at
the origin. The domains for the incident and the scattered � elds
are from (x , y, z) = ( ¡ 1.25, ¡ 1.25, ¡ 1.25) to (1.25, 1.25, 1.25)
and from (x , y, z) = ( ¡ 2.5, ¡ 2.5, ¡ 2.5) to (2.5, 2.5, 2.5), respec-
tively. A uniform Cartesian grid of 101 £ 101 £ 101 is used for the

Fig. 10 Schematic of the computa-
tional domain for the scattering of
an acoustic wave from a point source
wave by a sphere.

Fig. 11 Instantaneous pressure at t = 8.5 in the plane z = 0 for the
scattering of an acoustic wave from a point source by a sphere. k = 2¼
and Mx = 0.

Fig. 12 Instantaneous pressure at t = 8.5 along the y axis for the scat-
tering of an acoustic wave from a point source by a sphere. k = 2¼ and
Mx = 0: ——, analytical solution; and – – –, numerical solution.

scattered � eld. The domain is shown in Fig. 10. The incident pres-
sure is initialized with the following de� nition of a point source:

q i = 0.01[cos (kr ¡ x t ) / r] (27)

where

k = x = 2p , pi (x , y, z, 0) = q i (x, y, z, 0)

u i (x , y, z, 0) = vi (x , y, z, 0) = w i (x , y, z, 0) = 0 (28)

and r is the radial distancefrom the source. Until a periodic solution
is achieved, the pressure pi is multiplied by a smoothing function
given by expression (24).

The wave number is given by k =2 p , so that ka = p , as in the
two-dimensional simulations. Moreover, 20 points per wavelength
are used. The Doppler effect increases the wave number at some
locations in the presence of a mean � ow. To be able to compare
both simulations at rest and for Mx = 0.4, the number of points per
wavelength must be kept higher than 5.

Figure 11 shows the instantaneous pressure contours at t =8.5.
The shadow zone can be seen behind the sphere on the y axis in
Fig. 12. It also shows the good agreement between the analytic and
the numerical solutions. Figure 13 shows a comparison between
the analytic and numerical solutions on the z axis. The symmetry
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Fig. 13 Instantaneous pressure at t = 8.5 along the z axis for the scat-
tering of an acoustic wave from a point source by a sphere. k = 2¼ and
Mx = 0: ——, analytical solution; and – – –, numerical solution.

Fig. 14 Instantaneous pressure at t = 8.5 on the plane x = 0 for the
scattering of an acoustic wave from a point source by a sphere. k = 2¼
and Mx = 0.4.

Fig. 15 Instantaneous pressure at t = 8.5 on the plane z = 0 for the
scattering of an acoustic wave from a point source by a sphere. k = 2¼
and Mx = 0.4.

and smoothness of the numerical solution and the good agreement
between the analytic and numerical solutions can again be seen.

Nonuniform Mean Flow

A sphere of radius b =0.5 and a point source are placed at the
same locations, and the � ow is described by

U (x , y, z) = 1
2
Uo [2 + b3 (1 / r 3

o ¡ 3x2 / r 5
o )]

V (x , y, z) = ¡ 3
2
Uob

3xy / r 5
o

W (x , y, z) = ¡ 3
2
U0b

3xz / r 5
o (29)

where ro is the distance from the center of the sphere. Inside the
sphere the velocities are set to zero.

The domains for the incident and the scattered � elds are from
(x , y, z) = ( ¡ 1.75, ¡ 1.75, ¡ 1.75) to (1.75, 1.75, 1.75) and from
(x , y, z) = ( ¡ 2.5, ¡ 2.5, ¡ 2.5) to (2.5, 2.5, 2.5), respectively. A

uniform Cartesian grid of 101 £ 101 £ 101 is used for the scattered
� eld.

The incidentpressure is initializedwith the following solution for
a point source in a � uid moving in the x direction at Mach number
Mx :

p(x, t ) =
0.01 exp(i x s )

4 p r [1 + Mx x / r]
(30)

where

s = t +
Mx x /ao ¡ {x2 + (1 ¡ M2

x ) [(y ¡ 2.5)2 + z2]}
1
2

1 ¡ M 2
x

(31)

k = x = 2p , pi (x , y, z, 0) = q i (x, y, z, 0)

u i (x , y, z, 0) = vi (x , y, z, 0) = w i (x , y, z, 0) = 0 (32)

and r is the radial distance from the source.
Figures 14 and 15 show the instantaneous pressure contours at

t = 8.5 in the x = 0 and the z =0 planes, respectively.The solution
is seen to be symmetric about the z = 0 plane in Fig. 14 and the
shadow zone is also evident. Figure 15 shows how the shadow zone
is tilted by the mean � ow. The usual Doppler shifts in wavelength
are also observed.

Discussion and Conclusions
The examples presented in this paper represent relatively low-

frequency problems in which the wavelength of the incident sound
is of the order of the characteristicdimensionof the scatteringbody.
For a rotorcraft application this would be typical of the � rst few
harmonics of the main rotor blade-passagefrequency (BPF) (of the
order of 10 Hz) and the tail rotor fundamental BPF. The examina-
tion of relativelyhigher frequencieswould increasethe grid require-
ments. For example, consider a frequencyof 250 Hz. The numerical
methods used in this paper require at least 6 points per wavelength.
This is equivalent to 5 grid points per meter for the 250-Hz sound
wave. For a rotorcraft with dimensions 15 £ 4 £ 4 m, the total grid
requirements (incident plus scattered), assuming a uniform Carte-
sian grid, would be approximately 8 £ 105 grid points. This would
include a scattered � eld up to four wavelengths from the rotorcraft.
This is of the same order as the grid used in the sphere scattering
problem of the preceding section.

Also, the scattering bodies considered in this paper have been
relatively smooth with no sharp corners. Chung and Morris,12 us-
ing the total � eld version of the IMM, calculated the scattering of
sound by a thin, � nite, rigid plate. The plate was represented by an
impedance mismatch region of one grid spacing, that is, two adja-
cent rowswere assigneda lower mean density.The resultscompared
very well with the numerical solution obtained by Tam and Dong17

and the analytic solution. Thus it is expected that the present ver-
sion of the IMM would be able to capture scattering by thin edges
or wedge-shaped bodies.

In thispapera newmethodto simulateacousticscatteringhasbeen
introduced.Two- and three-dimensionalsimulations have been per-
formed to � nd the limits and properties of the method. The method
is found to make ef� cient, accurate predictions. No extra compu-
tations are required at the solid boundaries so that scattering by
any complex geometry may be solved without additional computa-
tional time. In the future, the three-dimensional parallel code will
be coupled to a rotorcraft noise prediction code to predict the noise
generated by a rotor and scattered by a fuselage and wings.

Acknowledgments
This research was supportedby NASA Langley Research Center

under NASA Grant NAG-1-1924. The technical monitor is K. S.
Brentner.

References
1Ffowcs Williams, J. E., and Hawkings, D. L., “Sound Generation by

Turbulence and Surfaces in Arbitrary Motion,” Philosophical Transactions
of the Royal Society of London Series A, Vol. 264, No. 1151, 1969, pp. 321–

342.



LAIK AND MORRIS 75

2Lighthill,M. J., “On SoundGenerated Aerodynamically: I. General The-
ory,” Proceedings of the Royal Society of London Series A, Vol. 211, No.
1107, 1952, pp. 564–587.

3Brentner, K. S., “Predictionof Helicopter Rotor Noise–A Computer Pro-
gram Incorporating Realistic Blade Motions and Advanced Formulation,”
NASA TM-87721, 1986.

4Brentner, K. S., “An Ef� cient and Robust Method for Predicting Rotor
High Speed Impulsive Noise,” AIAA Paper 96-0151, Jan. 1996.

5Strawn, R., and Biswas, R., and Lyrintzis, A., “Helicopter Noise Predic-
tions Using Kirchhoff Methods,” Proceedings of the American Helicopter
Society, 51st Annual Forum. Part 1, American Helicopter Society, Alexan-
dria, VA, 1995, pp. 495–508.

6Brentner, K. S., and Farassat, F., “Analytical Comparison of Acoustic
Analogy and Kirchhoff Formulation for Moving Surfaces,” AIAA Journal,
Vol. 36, No. 8, 1997, pp. 1379–1386.

7Hanson, D. B., and Magliozzi, B., “Propagation of Propeller Tone Noise
Through a Fuselage Boundary Layer,” Journal of Aircraft, Vol. 22, No. 1,
1985, pp. 63–70.

8Hanson, D. B., “Helicoidal Surface Theory for Harmonic Noise of Pro-
pellers in the Far Field,” AIAA Journal, Vol. 18, No. 10, 1980,pp.1213-1220.

9Atalla, N., and Glegg, S., “A Geometrical Acoustics Approach for Cal-
culating the Effects of Flow on Acoustics Scattering,” Journal of Sound and
Vibration, Vol. 171, No. 5, 1994, pp. 681–694.

10Atalla, N., and Glegg, S., “Ray-Acoustics Approach to Fuselage Scat-

tering of Rotor Noise,” Journal of the American Helicopter Society, Vol. 38,
No. 3, 1993, pp. 56–63.

11Chung, C., “Wave Propagation and Scattering in ComputationalAeroa-
coustics,” Ph.D. Dissertation, Dept. ofAerospace Engineering,Pennsylvania
State Univ., University Park, PA, 1995.

12Chung,C., and Morris, P. J., “Acoustic Scattering from Two- and Three-
Dimensional Bodies,” Journal of Computational Acoustics, Vol. 6, No. 3,
1998, pp. 357–375.

13Tam, C. K. W., and Webb, J. C., “Dispersion-Relation-Preserving Dif-
ference Schemes for Computational Aeroacoustics,” Journal of Computa-
tional Physics, Vol. 107, No. 2, 1993, pp. 262–281.

14Laik, O. A., “Direct Simulation of Acoustic Scattering by a Rotorcraft
Surface and Flow,” M.S. Thesis, Dept. of Aerospace Engineering, Pennsyl-
vania State Univ., University Park, PA, 1998.

15Morris, P. J., “The Scattering of Sound from a Spatially-Distributed
Axisymmetric Cylindrical Source by a Circular Cylinder,” Journal of the
Acoustical Society of America, Vol. 97, No. 5, 1995, pp. 2651–2656.

16Morris, P. J., “Scattering of Sound From a Spatially-Distributed,
Spherically-Symmetric Source by a Sphere,” Journal of the Acoustical So-
ciety of America, Vol. 98, No. 6, pp. 3536–3539.

17Tam, C. K. W., and Dong, Z., “Wall Boundary Conditions for High-
Order Finite-Difference Schemes in Computational Aeroacoustics,” Theo-
retical and ComputationalFluid Dynamics, Vol. 6, No. 5-6, 1994, pp. 303–

322.


