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Direct Simulation of Acoustic Scattering by Two- and
Three-Dimensional Bodies

Olivier A. Laik*and Philip J. Morris'
Pennsylvania State University, University Park, Pennsylvania 16802

A method is presented for the determination of acoustic scattering from two- and three-dimensional bodies with
arbitrary geometries and in the presence of a nonuniform flow. The technique is an extension of the impedance
mismatch method, in which the scattering body is replaced with a region of different acoustic impedance. To
minimize the oscillations at the body surface, an auxiliary problem, related to the conservative form of the linearized
Euler equations, is posed and solved numerically. Example problems are solved for a cylinder, a Rankine oval,
and a sphere in a fluid at rest and in the presence of a nonuniform mean flow. Comparisons are made with exact
solutions, if they are available, and the agreement between the numerical and the analytical solutions is very good.

Nomenclature

speed of sound

radius of sphere

= length of Rankine oval

width of Rankine oval

= x, y components of flux

zeroth-order Hankel function of second kind
wavenumber

smoothing parameter

x, y components of Mach number

= distance normal to body surface

pressure

source/sink strength

reflection coefficient

residual

= radial distance in cylindrical polar coordinates
= radial distance in spherical polar coordinates
= time

vector of unknown primitive variables

X, y, zcomponents of mean velocity

= x, y components of particle velocity

= density

= frequency
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Subscripts

incident

nonuniform mean flow in residual
ambient properties

= reflected

scattered

transmitted

uniform mean flow in residual
value of mean density in residual
= ambient properties of media 1, 2
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Superscript

= auxiliary variable
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Introduction

ESEARCH on rotorcraft has generally been focused on in-

creasing their speed and performance. This has drawn attention
to the need to understand and control the noise that they generate.
Various methods are availableto predictthe near and the far acoustic
fields of rotorcraft. Ffowcs Williams and Hawkings1 (FW-H) gen-
eralized Lighthill’s acoustic analogy approach? including the effect
of very general types of surfaces and surface motions. The FW-H
equation is a rearrangement of the Navier-Stokes equation into an
inhomogeneous wave equation with a quadrupole source distribu-
tion in the volume exterior to any surfaces and monopole and dipole
sources on the surfaces.

The acoustic analogy has been used by Brentner’ to develop the
WOPWOP computer code that solves the FW-H equation for both
near- and far-field noise. Recently Brentner* developed an efficient
and robust method to predict high-speedimpulsive noise by using a
far-field approximation for the quadrupole source term. He imple-
mented this technique in the WOPWOP+ code.

An alternativeto the acoustic analogy approachis the direct com-
putation of the flow and acoustic fields surroundingthe rotor blades.
This is simply the application of computational fluid dynamics
(CFD) methodology to the calculation of the acoustic field directly
as part of the unsteady fluid dynamic problem. Potential, Euler, or
Navier-Stokes solvers have been used. The main drawback is that
this numerical approach is very computationally time intensive. A
large number of mesh points are required, and calculations quickly
become too large, even for today’s fastest computers. However, this
direct method is potentially capable of providing the solution to the
most complicated acoustic problems.

Nevertheless, calculations over limited regions can be extended
to the far field by making use of Kirchhoff methods. The Kirchhoff
formulation is based on an integration over a surface surrounding
the rotor and allows both rotation and translation of this surface.
Strawn et al.” compared the performance of rotating and nonrotat-
ing surfaces for Kirchhoff methods with experimental results and
they showed good agreement. However, the inclusion of blade-
vortex interaction noise prediction is not an easy task because the
Kirchhoff surface is assumed to move through an environment at
rest. Brentner and Farassat® have shown how the use of the FW-H
equation can overcome many of the limitations associated with the
linear Kirchhoff method. The major advantage of Kirchhoff and
related methods over direct computations occurs in the far-field
calculations. CFD solvers are generally applied to a limited do-
main, whereas the combined CFD/Kirchhoff method can compute
the acoustic pressure at any location with reduced computational
time requirements.

All these methods have advantages and some deficiencies, but
usually they do not take into account the aircraft fuselage and wings
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and the flow around the aircraft in their predictions. An obstacle in
the path of a sound wave causes scattering and may be perceived
as a secondary source of sound. These scattering effects cannot be
ignored for sources near a scattering body, as is always the case for
any powered aircraft.

Several methods have been developed to solve scattering prob-
lems from complex geometry bodies. These include the bound-
ary and the finite element methods as well as finite difference ap-
proaches. Generally, these types of formulation cannot handle cases
in which the acoustic source has a broad spectrum or in the pres-
ence of a nonuniformflow. Also, few studies have attempted a time-
domain formulation of this phenomenon.

Hanson and Magliozzi’ have developed a three-dimensional
methodin which the flowfield is made up of a boundary-layerregion
and an outer region free of shear. They consider the scattering of
propeller noise by a fuselage modeled as an infinite cylinder. The
acoustic waves are solved separately in each domain, and a match-
ing condition is applied at the outer limit of the boundary layer.
Previously, Hanson® had developed a helicoidal surface theory that
gives the harmonicnoise of propellersin the far field. Because of the
presence of the fuselage, the free field predictions need to be cor-
rected by factors varying from —20 to 4 dB in the flight direction.
Also, a shadow zone occurs around the fuselage.

Another approach to scattering problems is the geometric acous-
tics (GA) method. Atalla and Glegg9 have used a combination of
geometric acoustics and the paraxial ray approximation (PRA). Re-
sults for the scattering of sound from a point source by a cylinder
and by a Rankine oval show good qualitative agreement with the
results of Hanson and Magliozzi. Atalla and Glegg'® also applied
the PRA to the problem of fuselage scattering of rotor noise. This
GA method fails in the shadow zone where diffraction effects are
important. Also, the specification of a more complicated scattering
body shape than the ellipsoids and the rectangular boxes used in
their model problems would be complicated.

The present study uses a new technique for the solution of time-
dependent acoustic-scattering problems: the impedance mismatch
method (IMM). This technique, developed by Chung,'' simplifies
the implementation of a solid wall boundary condition by setting the
acoustic impedance of each medium encountered by the wave to a
different value. This impedance difference results in reflected and
transmitted waves with appropriateamplitudes. The primary benefit
of this method is that no modifications to a simple Cartesian grid
need to be made for complicated body geometries. Thus high-order
finite difference schemes, suitable for computational aeroacoustics
(CAA) simulations, may be applied without modificationin all parts
of the domain. Further details of the original implementation are
given by Chung'' and Chung and Morris.'?

This paper introduces some major modifications to the IMM.
First, it allows for the separate calculation of the incident field.
This can be obtained from an analytical solution in the case of
model problems or from a numerical prediction scheme such as
WOPWOP+. Also, the method has been extended to include the
effects of a nonuniform flow about the scattering body. This paper
provides a validation of the method through the use of two- and
three-dimensional model problems for which exact solutions exist,
although this is not the case when nonuniform flow is included. A
parallel program, written in Fortran 90, is used for the simulations.
The ultimate goal of this work is to couple a rotorcraft noise pre-
diction code, such as WOPWOP,? to this parallel scattering code to
predict the noise scattered by the fuselage of a rotorcraft.

In the next section descriptions of the IMM, the governing equa-
tions, and the numerical implementation are given. Then several
numerical simulations for acoustic scattering by two- and three-
dimensional bodies are described. These include the scattering of
sound from a line source by a cylinder and by a Rankine oval in a
fluid at rest and in a nonuniformmean flow. Also consideredare the
scattering of waves from a point source by a sphere in a fluid at rest
and in a nonuniform mean flow.

The examples presented here represent relatively low-frequency
problems. The application of the present method to a typical rotor-
craftapplicationis given in the Discussion and Conclusionssection.

Also discussedis the applicationof the present method to scattering
from bodies with sharp edges.

Impedance Mismatch Method

Basic Principle

The IMM is based on the propagation of acoustic waves in inho-
mogeneous media. Consider a plane interface between two media.
The unperturbed properties of the media and the fluctuations in the
two media are denoted by subscripts 1 and 2. Thus p; and p, are
the mean densities and a; and a, are the speeds of sound in the two
media, respectively. The incident wave impinges on the boundary
between the two media, and this results in transmitted and reflected
waves. In terms of the characteristicimpedancesof each medium pa,
the transmission and the reflection coefficients can be shown to be

2pia
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where p;, p,, and p, are the incident, transmitted, and reflected
pressures, respectively.

Now consider the form of the linearized Euler equations for one-
dimensional flow:
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where p, and a, are the densities and the speeds of sound in either
medium. It should be noted that the discontinuitiesin the properties
of the two media at the interface are matched by discontinuitiesin
the spatial derivatives of the acoustic fluctuations. In this way the
time derivatives are continuous. However, high-order spatial finite
difference schemes have difficulty in the accurate approximation
of such discontinuities. In fact, Chung'' found that the numerical
solutions to a naive application of the impedance mismatch con-
cept exhibited instabilities. To overcome this problem, an auxiliary
problem is solved. The one-dimensionalauxiliary problem with no
mean flow is described by the following set of equations, where
p = plpy, i =upy, and p = p/py:
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where the new dependent variables are required to be continuous at
the interface. These new variables implicitly include the matching
of discontinuities present in the physical problem. In the present
analysis it is assumed that the speeds of sound are the same in the
two media. This means that, in multidimensional problems, oblique
waves are not distorted and the impedances of the two media are
determined by their density. The transmission and the reflection
coefficients then become

T =1p/ pil =2p2/ (p1 + p2) ©)

R=1p,/pil =(pi = p2)/(p1 + p2) (10)
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Consequently, to represent the presence of a reflecting body a
lower relative density, p, << p; is required. po/ py =1/30 has been
found to be an appropriate value to represent the density of the
scattering body.!! Now the solution in the first medium, outside
the scatteringbody, is identical to the physical solution, whereas the
solution inside the body is ficticious.

Thus, in the IMM, the presence of a body is represented by a
lower mean density in governing equations. A body-fitted grid is
not required and the same Cartesian grid may be used to represent
any body geometry. The governing equations are described next.

Governing Equations
In the two-dimensional case, the total fluctuations satify the lin-
earized Euler equations in nondimensional form:

oU OoE ©OF
+—+ =

—t—+ — =0 11
ot ox oy (n
—Rpp.n(U, 1)
where U, E, and F are defined by
p M.p + p,u
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U= ’ E = 2 prp
v M.y
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M,p + p,v
Myu
F = (12)
My + plp,
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and M, and M, are the nondimensionalmean flow velocitiesin the
x and the y directions,respectively. The velocity scale is the uniform
speed of sound, the density scale is the density in the fluid medium
pi1, and the length scale is based on a dimension of the scattering
body as defined below. R, ,(U, t) denotes the residual. The first
subscript indicates the value of the mean density and the second
denotes whether the mean flow is uniform # or nonuniformn. The
arguments of the residual are the vector of unknowns and note that
the residual is time dependent.

The original IMM!! solved for the total field. This would mean
that an externally determined incident field would have to be im-
posedat one boundary of the computationaldomain. In addition, the
same boundary would have to permit the radiationof scattered waves
without reflection. The present implementation separates the inci-
dentand the scatteredfields. In all the cases to be solved, the incident
pressure is assumed to be known. This is either from an analytical
solution or from a separate noise prediction code. All variables are
split in three parts: a known unperturbed flow condition, denoted
by the subscript o, a known incident perturbation, denoted by the
subscripti, and an undeterminedscattered perturbation,denoted by
the subscripts. Thus,

P=P0+Pi+Pm u=U{)+ui+ux

v =V0+Vi +Vm p=P{)+pi +px (13)

Because many rotorcraft noise prediction codes predict only the
acousticpressure,only the incidentpressureis assumedto be known.
The particle velocities of the incident field are calculated.

The incident field is assumed to propagate in a uniform mean
flow with components M,, and M, in the x and the y directions,
respectively. So it satisfies the equation
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where, as the notation for the residual implies, E; and F; are given
by Egs. (12) withp, =1, M, =M,,, My =M,,,and U =U,.

If the equation for the incident field is subtracted from the total
field equationand the fluctuationsare splitintoincidentand scattered
components, the equation for the scattered field may be written as
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The first residual on the right-hand side of Eq. (16) represents the
propagation of the scattered field in a nonuniform flow. The final
two residuals represent the difference between the incident field in
a uniform flow in the absence of the body and corrections for the
nonuniform flow and the presence of the scattering body. These
terms act as sources that drive the scattered field.

In the uniform medium, far from the body,

oU,
Y =R, (U, 1) a7
That is, the right-hand side of Eq. (15) is equal to zero everywhere
where the flow is undisturbed. This property of the governingequa-
tion is used to optimize the implementation. The incident field is
calculated on only a smaller grid, a subset of the computational
domain used for the scattered field.

Numerical Implementation

CAA requires a high accuracy in the numerical schemes used
to obtain accurate numerical solutions with a minimum of disper-
sion and dissipation. Thus, the dispersion-relation-preserving finite
difference scheme!? has been used for the spatial discretization of
these equations. The scheme uses a 7-point stencil and is formally
fourth-order accurate: However, its dispersion characteristics are
better than a sixth-order accurate, Taylor series-based scheme. The
algorithmmarches in time, and a time step consists of three callsto a
fourth-order Runge-Kutta time-integration method for both fields.
A new incident field is required at only the second and the fourth
stages of the fourth-orderRunge-Kutta time integrationfor the scat-
tered field, as the source terms in the residualdo not change between
the second and the third stages. Therefore integrationof the incident
field is performed after the first and the third stages of the scattered-
field integration. Nonreflecting boundary conditions'* are applied
at the boundary of both the incidentand the scattered computational
domains. In fact, because the incident pressure is already known,
no particular boundary condition s required for letting the incident
wave propagate out of the domain. Therefore the particle velocities
atthe outer pointscan simply be calculatedfrom the Euler equations.
Calculations with both the Euler equations and the nonreflecting
boundary conditions have been performed and give similar results.
However, the computational time is much lower when a radiation
boundary condition is used.

The parallel programs are written in Fortran 90 and use the
Message Passing Interface library for parallel communication.
The computationaldomain consists of two grids: a large grid where
the scattered field is calculated and a smaller grid where the particle
velocities of the incident field are calculated. Both grids are Carte-
sian and are split evenly among the processors so that the workload
of each processor is identical. Further details are given by Laik.'

The simulations have been performed on a Silicon Graphics
Power Challenge with six processors for the two-dimensional cases
and eight processors for the three-dimensional cases. The compu-
tational time depends on the size of both grids. For the case of
scattering of a point source by a sphere at rest, 64.5 s per time step
or 0.487 ms per time step per grid point is required. In the pres-
ence of the nonuniform mean flow the incident grid is larger and
the computational time is higher: 82 s per time step or 0.625 ms
per time step per grid point. Also, the two-dimensional simulations
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show that the computational time scales linearly with the number
of processors.

Two-Dimensional Simulations
This section presents a number of numerical examples of acoustic
scattering by two-dimensional bodies. The results are compared
with analytical solutions when they are available.

Plane Wave Impinging on a Cylinder

A plane wave propagates in the negative y direction and im-
pinges on a cylinder of unit nondimensional radius with its axis
perpendicular to the (x, y) plane located at the origin of the do-
main. The domains for the incident and the scattered fields are from
(x,y)=(—1.5,—1.5) to (1.5, 1.5) and from (x, y) =(—=5, =5) to
(5, 5), respectively. A uniform Cartesian grid of 201 X201 is used
for the scattered field, with the cylinder diameter equal to 40 grid
points. The domain is sketched in the Fig. 1. The effect of the body
densities is perceived only in the vicinity of the cylinder. Therefore
the incident particle velocities are calculated on only the smaller
grid defined above.

The incident pressure is initialized with the following definition
of a plane wave with a smoothed leading edge:

0.01 cos [k(y - ysourcc) + CO[]
for Y = Ysource — L

pilx.y, 1) = 0.0IGXP{ —8[(y = Ysource + t)z]} (18)
otherwise
with
k=w=m, pi(X, ¥, 1) = pi(x,y,1)
u;(x,y,0) =vi(x,y,0) =0 (19)

Ysource 18 chosen so that there are no incident pressure disturbances
inside the cylinder at the beginning of the simulation. Otherwise the
time history is dominated by a transient disturbance. This transient
is caused by the presenceof anincident wave in the solid withoutany
cancellationby the scatteredfield at the beginning of the calculation.
It dominates the total pressure history and contaminates the results.

In this case, the use of a plane wave provides an easy way to
evaluate the accuracy of the incident-wave particle velocity calcula-
tions. A comparison shows a good agreement everywhere exceptin
aregionnear the computationalboundaries, 5-6 points wide, where
the relative error is greater than 10~° and can reach 10%. This may
be due to the incompatabilityof the asymptoticboundary conditions
and a plane-wave solution. In any event, these boundary values are
removed in the calculation of the scattered field in Eq. (16).

In the immediate vicinity of the body, high wave-number dis-
turbances are noticeable and arise from the discontinuity of body
densities at the interface. It should be noted that, although the new
dependentvariablesin the auxiliary problem, p, i1, ¥, and p, are con-
tinuous at the interface, their derivativesare not. To reduce the effect
of this discontinuity, a model of the interface, which is commonly
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used in oceanography for the propagation of waves in layered me-
dia, is applied in this study. The jump in body densities is replaced
with a smoothing function of the form

po =3(1+5) + (1 = 5) tanh[(n — 1)/L] (20)

where L is the distance over which the density changes from % to 1
and n is the distance normal to the surface. A value of L of 0.05 has
been used in the present calculations. A detailed study of the effect
of this parameter has not been conducted, but smaller values would
increasethe generationof high wave-numberdisturbancesand lower
values would extend the influence of the body unrealistically. With
the use of this smoothing of the surface discontinuity,the high wave-
number disturbances at the interface vanish.

Figure 2 presents the rms pressure contours. As expected, the
maximum reflections are located above the cylinder whereas the
zone behind the body is shadowed. The IMM solution agrees very
well with the analytic solution.!> However, some differences are
perceivedin the regionclose to the cylinderbecausethe transmission
coefficienthas anonzerovalue. Two slices have been extracted from
the two-dimensionalinstantaneousplots to compare the analyticand
the computational solutions. The pressure along the axes y =0 and
x =0 are represented in Figs. 3 and 4, respectively. The errors are
not significant and decrease with distance from the cylinder.

Line Source Scattering by a Rankine Oval

This section defines the Rankine oval geometry and the flow
around the solid. Then the results of the simulations are given. First,
the Rankine oval is placed in an environment at rest. Then these
results are compared with the case of the scattering of waves from
a line source by a Rankine oval in a flow perturbed by the solid.
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Geometry and Flow

The flow around the Rankine oval is determined by the superposi-
tion of a source and a sink of equal strengthin a uniform flowfield. In
the simulations, the nondimensional magnitude of the undisturbed
flow is M., =0.4. The strength of the source and the sink and the
distance betweenthemare Q =0.3811065and 2d =1.4561566,re-
spectively.A Rankine ovaloflength D =2 and widthd = 1 is placed
at the origin of the domain and the interface is smoothed, as in the
cylinder case. Around the solid, the flow velocities in the x and the
y directions may be written as

U,y =, + —20*D QO =d)
dnf(x +d) + 213 dxl(x —d)* + 2]
Vix,y) = Oy Qy

4xf(x +d)? + y2]? - 4xf(x —d)? + y2]?
21

Inside the body, the flow velocity is set to zero.

No Mean Flow

A line sourceis placed at (x, y) =(0, 2) and the incidentacoustic
waves impinge on the Rankine oval centered at the origin. The com-
putational domains for the incident and the scattered fields are from
(x,y) =(—1.5,—1.5) to (1.5, 1.5) and from (x, y) =(=9, =9) to
(9,9), respectively. A uniform Cartesian grid of 361 X361 is used
for the scattered field. The domain is sketched in Fig. 5.

The incident pressure is initialized with the following definition
of a periodic wave from a line source:

pi =(0.01/4i) exp(iot) H (kr) (22)
where

k=o=mr, pi(x,y, 1) = pi(x,y,1)

ui(x, y,0) =vi(x,y,0 =0 (23)

and r is the radial distance from the source.
Until a stationary periodic solutionis achieved, the pressure p; is
multiplied by a smoothing function of the form

1 r—X —ct
—|1—tanh | —— 24)
2 [ ( 0.05 ) ]

X is chosen so that the incident pressure is initially negligibleinside
the body.

Figure 6 shows the instantaneous pressure contours (the sum of
the incident and the scattered fields) at time ¢ =20. The white oval
shape represents the Rankine body. Also, a singularity exists at the
location of the source, and this zone is masked by a white disk.
The directivity pattern is symmetric about the y axis and consists
of five lobes. This is shown in Fig. 7. A shadow zone lies behind
the Rankine body, and behind the source the level of the sound is
attenuated.
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Fig. 6 Instantaneouspressure contour for the scattering of an acoustic
wave from a line source by a Rankine oval at¢ = 20, k = 71, and M, = 0.
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Nonuniform Mean Flow

In this simulation, the Rankine oval is embeddedin a fluid moving
in the positivex directionand perturbedby the presence of the solid.
In this case the line source is located at (x, y) =(0, y,) =(0, 10).
This larger value is chosen to ensure that the mean flow is uniformin
the vicinity of the source. The pressure distribution for an acoustic
wave from a line source embedded in a fluid moving uniformly with
a velocity U, in the x direction may be written as

0.01 iw x-U,nU,
plx,t) = —eXp t+
. 3 1 — M? a?
4i(1 = M?) x 0

(2)
<] {

R g 1 — M2 _ Yz% 25
(=) [x* +( D=7 } (25)

with
M, =U,/a, =04,

k=w=m, y, =10

ui(x’ Y, 0) =Vi(x’ Y, 0) =0
(26)

pi(x,y,t) = pi(x, y,1),

Also, the pressure is multiplied by the smoothing function given by
expression (24) until a periodic state is achieved.

The computational domains for the incident and the scattered
fieldsare from(x, y) =(—6.5, —6.5)to (6.5, 6.5) andfrom (x, y) =
(=9, -9) to (9,9), respectively. A uniform Cartesian grid of
381 X 381 is used for the scattered field. The grid for the incident
field is much larger than that used in the preceding section. Because
the mean flow is perturbed around the body, the grid borders have
to be expanded so that the perturbations of the mean flow in both x
and y directions at the edge of the incident domain are negligible.

Figure 8 shows the instantaneous pressure contours at time
t =31.6. The scattering pattern behind the Rankine body is seen
clearly. In the region between the source and the solid a standing
wave regime is established. The Doppler shift in wavelengthis also
evident.

Two other simulations have been performed in this case to show
the effects of a mean flow on the scattering pattern: scattering in
an environment at rest and in a uniform mean flow unperturbed
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Fig. 8 Instantaneous pressure contour for the scattering of an acoustic
wave from a line source embedded in a nonuniform mean flow by a
Rankine oval atf = 31.6, k = 11, and M, = 0.4.
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by the scattering body. The source and the solid are kept at the
same locations. The directivity curves in Fig. 9 show the differences
between these cases. The rms pressure is extracted on a circle of
radius 5 centered at the origin. Therefore the patterns shown for
sin 6 positive do not correspond to the far-field directivity because
of the presence of the source at (x, y) =(0, 10). The multiple lobes
are associated with the interference between the incident and the
scattered fields, as shown in Fig. 8. In all cases, the shadow zone
remains almost identical. The mean flow shrinks this zone and tilts
it backward slightly. The changes that are due to the nonuniformity
of the mean flow do not appear to be important. This might not be
the case for shapes other than a Rankine oval in which the mean
flow nonuniformity could be greater.

In view of these small differences, a case in which the flow is
assumed to be uniform has been simulated with the source located
at(x, y) =(0, 2). The comparison of far-field directivities, with and
without flow, is shown in Fig. 7. There is a slight increase in the
radiation upstream, as would be expected. It should be noted that
the incidentfield has been modified by the presence of the mean flow
sothatthe incident-pressurelevels on the surface of the Rankine oval
are not the same in the two cases shown in Fig. 7. This explains the
reduction in the total field values in the presence of the mean flow.

Three-Dimensional Simulations: Point Source
Scattering by a Sphere

This section presents two problems of acoustic scattering by
three-dimensionalbodies. First, results for the scattering of acoustic
waves from a point source by a sphere are given and compared with
the analytic solution.!® Then the sphere is embedded in a nonuni-
form mean flow. No analytic solutions are available for the latter
case.

No Mean Flow

A point source is placed at (x,y, z) =(0,2.5,0) and the in-
cident waves impinge on a sphere of radius b =0.5 centered at
the origin. The domains for the incident and the scattered fields
are from (x,y,z) =(—1.25, —1.25, —1.25) to (1.25, 1.25,1.25)
and from (x, y, z) =(=2.5, =2.5, =2.5) to (2.5, 2.5, 2.5), respec-
tively. A uniform Cartesian grid of 101 X101 X 101 is used for the

25

Fig. 10 Schematic of the computa-
tional domain for the scattering of
an acoustic wave from a point source
wave by a sphere.
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Fig. 11 Instantaneous pressure at ¢ = 8.5 in the plane z = 0 for the
scattering of an acoustic wave from a point source by a sphere. k = 277
and M, = 0.
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Fig. 12 Instantaneous pressure at ¢ = 8.5 along the y axis for the scat-
tering of an acoustic wave from a point source by a sphere. k = 277 and
M, = 0: ——, analytical solution; and - - -, numerical solution.

scattered field. The domain is shown in Fig. 10. The incident pres-
sure is initialized with the following definition of a point source:

pi =0.01[cos (kr — wt)/r] 27
where

k=0=2n, pi(x,¥,2,0) = pi(x,y,2,0)

ui(x,y,z,0) =vi(x,y,2,0) =w;(x,y,2,0) =0 (28)

and r is the radial distance from the source. Until a periodic solution
is achieved, the pressure p; is multiplied by a smoothing function
given by expression (24).

The wave number is given by kK =2, so that ka =7, as in the
two-dimensional simulations. Moreover, 20 points per wavelength
are used. The Doppler effect increases the wave number at some
locations in the presence of a mean flow. To be able to compare
both simulations at rest and for M, =0.4, the number of points per
wavelength must be kept higher than 5.

Figure 11 shows the instantaneous pressure contours at  =8.5.
The shadow zone can be seen behind the sphere on the y axis in
Fig. 12. It also shows the good agreement between the analytic and
the numerical solutions. Figure 13 shows a comparison between
the analytic and numerical solutions on the z axis. The symmetry
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Fig. 13 Instantaneous pressure at ¢ = 8.5 along the z axis for the scat-
tering of an acoustic wave from a point source by a sphere. k = 27T and
M, = 0: ——, analytical solution; and - - -, numerical solution.
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Fig. 14 Instantaneous pressure at ¢ = 8.5 on the plane x = 0 for the
scattering of an acoustic wave from a point source by a sphere. k = 277
and M, = 0.4.
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Fig. 15 Instantaneous pressure at ¢ = 8.5 on the plane z = 0 for the
scattering of an acoustic wave from a point source by a sphere. k = 277
and M, = 0.4.

and smoothness of the numerical solution and the good agreement
between the analytic and numerical solutions can again be seen.

Nonuniform Mean Flow

A sphere of radius » =0.5 and a point source are placed at the
same locations, and the flow is described by

Ux,y,2) =3U, [2+ 5 (1/r} = 3x2[r))]
V(x,y,2) = =3Ub’xy[r]

W(x,y,z) = —3Uob’xz/r] (29)
where r, is the distance from the center of the sphere. Inside the
sphere the velocities are set to zero.

The domains for the incident and the scattered fields are from
(x,y,2) =(—1.75, —=1.75, —1.75) to (1.75,1.75, 1.75) and from
(x,y,2) =(=2.5, =25, =2.5) to (2.5,2.5,2.5), respectively. A

uniform Cartesian grid of 101 X 101 X 101 is used for the scattered
field.

The incident pressureis initialized with the following solution for
a point source in a fluid moving in the x direction at Mach number
M,:

0.01 exp(i @7*)
, 1) = —m—— 30
pex. 1) drr (1 + M x/r] (30)
where

1

M.x/a, - {x2 + (1= M) [(y — 2.5+ 2]}
=t + { ( 2 } (31)

1 - M2
k=o0=2n, pi(x,¥,2,0) = pi(x, y,2,0)

ui(x,y,z,0) =vi(x,y,2,0) =w;(x,y,2,0) =0  (32)

and r is the radial distance from the source.

Figures 14 and 15 show the instantaneous pressure contours at
t =8.5 in the x =0 and the z =0 planes, respectively. The solution
is seen to be symmetric about the z =0 plane in Fig. 14 and the
shadow zone is also evident. Figure 15 shows how the shadow zone
is tilted by the mean flow. The usual Doppler shifts in wavelength
are also observed.

Discussion and Conclusions

The examples presented in this paper represent relatively low-
frequency problems in which the wavelength of the incident sound
is of the order of the characteristicdimension of the scattering body.
For a rotorcraft application this would be typical of the first few
harmonics of the main rotor blade-passage frequency (BPF) (of the
order of 10 Hz) and the tail rotor fundamental BPF. The examina-
tion of relatively higher frequencies would increase the grid require-
ments. For example, consider a frequency of 250 Hz. The numerical
methods used in this paper require at least 6 points per wavelength.
This is equivalent to 5 grid points per meter for the 250-Hz sound
wave. For a rotorcraft with dimensions 15 X4 X4 m, the total grid
requirements (incident plus scattered), assuming a uniform Carte-
sian grid, would be approximately 8 X 10° grid points. This would
include a scattered field up to four wavelengths from the rotorcraft.
This is of the same order as the grid used in the sphere scattering
problem of the preceding section.

Also, the scattering bodies considered in this paper have been
relatively smooth with no sharp corners. Chung and Morris,'? us-
ing the total field version of the IMM, calculated the scattering of
sound by a thin, finite, rigid plate. The plate was represented by an
impedance mismatch region of one grid spacing, that is, two adja-
centrows were assigneda lower mean density. The results compared
very well with the numerical solution obtained by Tam and Dong!”
and the analytic solution. Thus it is expected that the present ver-
sion of the IMM would be able to capture scattering by thin edges
or wedge-shaped bodies.

In this papera new method to simulate acousticscatteringhas been
introduced. Two- and three-dimensionalsimulations have been per-
formed to find the limits and properties of the method. The method
is found to make efficient, accurate predictions. No extra compu-
tations are required at the solid boundaries so that scattering by
any complex geometry may be solved without additional computa-
tional time. In the future, the three-dimensional parallel code will
be coupled to a rotorcraft noise prediction code to predict the noise
generated by a rotor and scattered by a fuselage and wings.
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